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ABSTRACT

The problems of estimating the total number of measurement points
and the optimum spatial distribution of locations on a structure are ap-
proached theoretically in this report. The significant factors to be con -
sidered are statistical reliability and economy. Therefore, the relation -
ships are developed with the emphasis on measurement efficiency. Ran-
dom, systematic, and stratified sampling methods are compared for ef -
ficiency in estimating mean values. Then the optimum allocation of a
fixed number of measurement points in stratified sampling is developed,
and illustrative examples are given. Finally, relationships are presented
which will allow the total sample size to be estimated under the assump-
tions of normal and log-normal sampling distributions as well as by a
nonparametric approach. These formulas are deemed to be quite useful
for experiment planning purposes.

This abstract is subject to special export controls and each trans-
mittal to foreign governments or foreign nationals may be made only with

prior approval of the Air Force Flight Dynamics Laboratory (FDTR),

Wright- Patterson Air Force Base, Ohio 45433.
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GLOSSARY OF SYMBOLS

area of the structure

area of the structure in the hth zone

allowable measurement error

allowable error in the log regime

number of nonoverlapping zones (disjoint strata)

total number of data points in a sample

number of data points in the hth zone

maximum sample size possible

probability that a sample value will exceed a critical value

probability that a sample value within the hth zone will
exceed a critical value

sample variance

2
estimator for log by = log X + %

w‘eighting function associated with the hth zone
random variable used here as mean square stress
ith sample value of X

established critical value for X

sample mean of X

derived random variable

value of Y derived from the ith sample value of X
random variable having a normal distribution

the 100 @/2 percentage point of a standardized normal
distribution



a statistical level of significance

o true standard deviation
2 .

o true variance

V) true mean

E[ ] expected value of

Var[ ] variance of

Prob[ ] probability that

SE[ ] standard error in

A

() estimated value of

(_) space averaged value of



1. INTRODUCTION

There are basically two statistical problems associated with sampling
the response of aircraft structure to flight loads. Since these loads are
typically representative of a time varying random process, the first item
of concern is the time averaged statistical properties at a single point on
the structure. Given sufficient sample record length, these properties can
be estimated with reasonable accuracy, and for stationary random loading
conditions, necessary record lengths are not difficult to obtain.

The second basic problem concerns point-to-point variation on a
structure. Having evaluated conditions at a single point as a function of
time, it is of interest to know how the remainder of the structure is
behaving. It is this facet of sampling which is of concern in this report.
The relationships between the number of data points in a structural sample
and the accuracy in estimating two statistical properties of the data are
discussed thoroughly. The two properties investigated are the mean value
and the probability that a point selected at random on the structure will
exhibit a sample value which exceeds some specified level. The develop-
ments are aimed at providing tools for the planning of statistical loads
experiments. In Section 2, three different methods of sampling are
described along with their relative efficiencies. Formulas are given in
Section 3 for the optimum allocation of points in a sample when the structure
has been partitioned into zones for study. Section 4 gives methods for
determining the total number of points in a sample which will correspond
to a required degree of accuracy in the estimates. This is done for the
normal distribution, the log normal distribution, and a nonparametric

approach which considers the distribution to be unknown.



2. SAMPLING METHODS

In this section, three methods of spatial sampling are discussed in
terms of the parameters needed to assess their relative efficiencies.
The example random variable being sampled is mean square stress, although
any time averaged measure of load response could be substituted. It is
assumed in all cases that the statistical uncertainty associated with finite
sample record length is negligible compared with spatial variation. In the
following, n denotes the number of data points in a sample and Xi the

ith independent mean square stress measurement.

2.1 RANDOM SAMPLING

If mean square stress is measured at n points on a structure
selected at random, one has a random sample of data. It is assumed that
every point on the structure has been given independent and equal probability
of being a data point. The mean value of the data in the sample thus gathered

is given by

n
X = Z X, (1)

1=1

B~

The variance of the sample mean is defined as

2
Var (X) = N—Nl - (2)

2
where ¢ is the variance based on the maximum possible sample size, N.
Since N is usually considered infinite for structures, (N - 1/N) is equal to

one. For a sample size, n, the variance of the sample mean can be



estimated by

V/a\r (X) = e, (3)

2 2
with (/\) denoting estimated value. The term Sy which estimates o ,

is the unbiased sample variance and is given by

n

L) x - %P (4)

i=1

2—
°x * n

To estimate the probability, P (0 < P < 1), thatthe mean square
stress at any point on the structure selected at random will exceed some
critical value Xc , proceed as follows. Define a new random variable Y
which has these properties. For any measurement in the sample, Yi
equals one if Xi > XC and is zero if Xi < Xc . Since the prohability

that Xi > Xc is P, it follows that the expected value of each Yi is
E1[Yi]=1-P+0(1-P)=p (5)

Then, if the random sample consists of n measurements, the estimate

of P is given by

n
AN 1
p=;ZYi (6)

i=1

For a variable such as Y which can assume only the values one and

zero, the sample variance can be expressed as

2 n A
sy = Pu-9) (7)



A
The variance of P, using the relationship employed in Eq. (3) is then
estimated by
A A

var (B) - n—l—l- B(1-P) (8)

2.2 SYSTEMATIC SAMPLING

The second method of sampling requires the sample points to be laid
out on a structure in a systematic fashion. For example, in a one-dimensional
structure, this may amount to taking measurements at uniform intervals
along the single dimension. Systematic sampling, thus, places a restriction
on sample point location, which was not the case for random sampling. One
unfavorable aspect of this technique is the inability to correctly evaluate
data when certain periodic trends exist. This problem is discussed in
Reference 1 along with examples of special cases. In general, however,
this sampling method should be avoided when periodic trends exist in the
data. On the other hand, when a linear trend in the data exists, systematic
sampling becomes much more efficient than random sampling. Periodic
trends are more likely to exist in aircraft structural stress than are linear
trends because of normal mode response.

The mean value of a systematic sample of mean square stress in a
structure is given by Eq. (1), and the variance of the sample mean is closely

approximated by

Var (X) = Nl'\llcz (9)

when the variance due to finite time sampling is very small. Since the
maximum possible sample size, N, can usually be considered infinite for

structural sampling, (N - 1/N) is equal to one, and the variance of the



sample mean is simply 0_2 . That is, it is independent of the sample size
n. By comparing Eqs. (2) and (9), it is apparent that systematic sampling
is, in general, less efficient than random sampling. In view of the above

shortcomings of the method, systematic sampling will not be considered

further in the discussion.

2.3 STRATIFIED SAMPLING

Using this method, a structure is partitioned into L. non-overlapping
zones (disjoint strata), and n measurement points are allocated over the
structure in such a fashion that each zone contains at least two randomly
located points. The sample mean of the measurements is computed

from

L
X = Z W, X, (10)

where Wh is a weighting function associated with the hth zone, and )—(h

is the mean value for that zone. Here it can be seen that the interpretation

of the weighting function, W, , can be extremely important. Although

h’
many engineering factors may be involved in this interpretation, simple
area relationships will be used in this development. Then, Wh will be
defined as
A

h

LN - el

where Ah is the area of the hth zone, and A is the total area of the

structure under study. The variance of the sample mean is given by




R
Var (X) = Z e, (12)
h=1

2
where n is the number of points in the hth zone, and Y is the true zone

variance. Variance of the sample mean is estimated from

(13)

2
where Sy is the sample variance from the hth zone.

The efficiency of stratified sampling in estimating mean values can
be compared to that of random sampling by the following relationship

using Eqgs. (2) and (12).

Var (X by random sampling)

Relative Efficiency = —
Var (X by stratified sampling)

2
o /n

D 2 2 (14)
Z Wy o
h=1 nh

It can be seen from Eq. (14) that stratified sampling efficiency increases
for either an increase in 02 or a decrease in o-lf . Therefore, in order
to achieve high efficiency using this method, the structure should be

zoned so that the statistical properties of the zones are quite different from
each other but the data within each zone are very similar. In practice, the

within zone variances will be found to be smaller than the overall structure



variance, so stratified sampling will generally be superior to random
sampling. This may be true even though the zoning operation is performed
after an initial attempt at random sampling. Often the results of random
sampling will provide the best indicators for natural zone boundaries. For
example, assume that mean square stress has been measured at nine points

selected at random on an aircraft wing as illustrated in Figure 1.

Figure 1



Further, assume the set of data values at each point given in Table 1
has been obtained from long records during stationary loading conditions

so that the statistical uncertainty of each measurement is negligible.

2
Data Point Measured ms Stress Xi' (psi)

10.2 x 107
11.5 x
5.6 x

ot

1 x
.9x
.3 x
.1 x
b x
0x

O 00 N 0 o WD
O OV 0 o8 U N

Table 1

Then, if it is required to estimate the mean value of mean square stress
in the wing with low variance in the estimate, proceed as follows.
Using Eq. (1) to compute the sample mean for the values in

Table 1 results in

= 2
X = 2 ZX. = 8.2 x 107 (psi)
9 o1 L



The sample variance is, from Eq. (4),

Z(xi _8.2x100)% = 4.3x10 % (psi)?
i1

| =

2-—-
Sx—-

and the estimated variance of the sample mean is given by Eq. (3) for

random sampling.

4
Var (X) = —— = .48 x 101 (psi)4

Now, noting the relationship between the stress level and the physical
location of the various points in the sample, it would seem likely that greater
sampling efficiency (less variance in the estimate of the mean) could be
achieved if the wing were partitioned into zones such as shown in

Figure 2.

®




Examining the same data from the standpoint of stratified sampling,
where the weighting factor Wh is based on the ratio of zone area to wing

area alone, the parameters can be summarized as in Table 2.

Zone Wh n, Xi

1 33 | 2 10.2 x 10"
11.5 x

2 .37 e 5.6 x
7.1 x

5.9 x

6.3 x

3 .30 3 8.7 x
9.5 x
9.0 x

Table 2
The sample mean calculated using Eq. (10) is
3
- = T, .2
X = WXh=8.7x10(ps1)
h
h=1
and the estimate of the variance is, by Eq. (13)
3 2 2
W. s
A\ = 14 4
Var (X) = Z b b =0.066 x 10 "(psi)
h=1 B

10



Thus, it can be concluded that, although the estimate of the mean value of
mean square stress in the wing is nearly the same when using random or
stratified sampling, the latter method gives much more confidence in the
result.

The probability that the mean square stress measured at a point in
any of the zones will equal or exceed a specified critical level can be
estimated using a technique similar to that applied in Section 2.1 for random
sampling. That is, a random variable Y assumes the value Yi equal to
one if Xi > Xc and zero if Xi < XC . Then the desired probability can

be estimated from

>
1]
gl
=
>

15
wFh (15)
1
where o
B == Y Y, (16)
"h i=1
The variance is then estimated by
L A {;
Bl =)
A 2 h h
V/e}r (P) = Z Wh e e (17)

h=1 n, -1

11




3. OPTIMUM ALLOCATION IN STRATIFIED SAMPLING

Assuming that stratified sampling has been chosen as the tool for
estimating statistical properties of mean square stress in a structure, the
optimum allocation of a fixed sample size n can be determined from the
following. For the case where the mean value of spatially distributed mean
square stress measurements is to be estimated, the optimum allocation is
obtained by minimizing Eq. (12) with respect to n . Letting the weighting
function depend on area ratios alone, the allocation for each zone is

determined from

il e (18)

As an example of the use of Eq.(18), suppose the problem is to obtain the
best estimate of the mean value of mean square stress in the wing illus-
trated in Figures 1 and 2 employing a total of nine transducers and making
use of the preliminary data in Tables 1 and 2. After zoning the wing
structure as shown in Figure 2 and computing the area and sample variance

for each zone, optimum allocation is determined below in Table 3.

Zone Ah sy Ahsh Ahsh / ZAhsh n

1 | 44 | .92x107| 40.5x10" . 46 4

2 49 . 65x 31.8x 35 3

3 40 .41 x 16.4x .19 2
Table 3

12



As would be expected, optimum allocation requires a larger proportion
of the measurements to be assigned to the larger and more variable zones.

In the special case when the variances o, are equal for all zones, the

h
optimum allocation of n reduces to

A
h

That is, the allocation for each zone should be proportional to structural
area alone (or other significant weighting factor considerations). This
special case is called ""simple stratification' and is the most commonly
used method when the zone variances are unknown.

When sampling is conducted for the purpose of determining the
probability that a mean square stress measured at any point exceeds a

critical value, the optimum allocation of sample points is given by

Ah\/ P (1=P)

n =n - (20)

ZA P (1 -P)
&V h h

The parameter Ph is, of course, unknown and must be either assumed
or estimated from preliminary data.

If the object of the investigation is to make comparisons between
different zones, the rules for allocating the number of samples to each
zone are slightly different from those which applied for the above
developments. For example, it may be desired to compare the mean of
the measurements of two regions of a structure, two different structures, or
similar structures on two aircraft. If il and X, denote the means of the

2
data in two regions of interest,

13



2 2
- T o
var (X, - X,) = — + =%

2 n n {#1)

—t
N

If Var (}_(1 - 3(_2) is minimized with respect to n, and n,, one obtains

nh: n———+0_ ’ h=1,2 (22)

Equation (22) indicates that the number of samples in each region should
be allocated proportionally to the standard deviation. Note that the
sample allocation given by Eq. (22) is independent of the size of the area
being considered, while that given previously by Eq. (18) was directly
proportional to the area of interest. In general, if there are L regions
of comparative interest, the optimum allocation among them would be

(see Reference 2)

(23)

14



4. DETERMINATION OF SAMPLE SIZE

In estimating the statistical properties of a random process from a
sample consisting of a finite number of data points, the accuracy of the
estimates increases with sample size. Although a high degree of accuracy
is always desirable, economic considerations usually impose a practical
restriction upon the maximum number of points in a sample. Therefore,
practical sampling procedures involve a compromise between accuracy
and economy. The logical first step, then, is to define the amount of
error that can be tolerated in the sample estimates. This can take the
form of a statement of precision specifying the minimum probability that
the difference between an estimate and the corresponding true value does
not exceed a given amount. Then, if sufficient information about the
distribution of the variable under investigation is available, a rational
approach to the determination of the sample size for a given experiment
can be implemented. In this section the sample size requirements
associated with two specific, well-known distributions are discussed as

well as a nonparametric approach to sample size determination.

4.1 SAMPLE SIZE UNDER A NORMALITY ASSUMPTION

Assume that the distribution of sample mean square stress
measurements, X, in a structure tends to normality as the sample size
increases. Although this assumption suffers under the practical limitation
that mean square stress can never be negative, this should not materially
decrease the value of the following developments.

Consider the problem of estimating the mean value, i, of the data
within plus or minus d units of the true mean p. The appropriate

statement of precision for a probability of (1 - @) is expressed as
Prob (| X-pl < d) >1-a (24)

15



Now let

X -
Z Sl . N (25)
“/2 spX)

where Za/ is the 100 a/2 percentage point of the standardized normal

2

distribution, and

-
v n

is the standard error in estimating mean values obtained from Eq. (2). A

SE(X) = (26)

value for ¢ must either be assumed or estimated from preliminary measure-
ments. Combining Eqs. (25) and (26), the sample size required to satisfy

Eq. (24) is
2 _2
(13 Za/Z

2
d

n-=

(27)

To illustrate the approach, consider the following example. Suppose it
is required to estimate the mean value of mean square stress in the wing
shown in Figure 1 within 2 107 (psi)2 with a minimum probability of . 90
under a normality assumption. That is, if the experiment were repeated
many times, the sample mean would fall between p+ 107 and - 107 (psi)2

on at least 90% of the trials. In this case, d=10, 1-a=.90, Z =1.65,

05
2
and ¢ is taken as equal to the sample variance from Section 2. 3, or

2 14 4
o =4.3x10 " (psi) . Then,

14 2
0= 4.3x10  (1.65) - 11,7

1014

Therefore, a sample size of 12 would be appropriate for the required

accuracy. Although the tolerance 4 107 (psi)Z might seem large, in this
case it equals only about t 12% of the first estimate for the mean computed
in the example of Section 2. 3.

The problem of estimating the probability that the stress at a point

selected on the structure at random will have a mean square value, X,

16



exceeding an established critical level Xc , is approached in a similar
manner. If it is required that the estimated probability be within plus

or minus d units of the true probability, the statement of precision is

VAN
PronP -P|< d)z 1-a (28)

where P is defined as

3o 2
P = 1 e-(x-p') /20'
oV 2r X
c

2
dx (29)

If the sample size is large (say n > 10), the function

P-P
Z= ——— (30)
sE ()
is approximately normal with zero mean and unit variance. Since the

standard error in estimating P is [see Eq. (8)],

SE(P) = \/%1—_’{3 (31)

the required sample size in this case is given by

2
z,,,P(1-P)

n= +1 (32)
dZ




4,2 SAMPLE SIZE UNDER A LOG NORMAL ASSUMPTION

Since the mean square value of a stress can never be negative, the
normality assumption could clearly not hold true for all data. Some form
of skewed distribution might then provide a more suitable model for this
or similar situations. One which has been well studied and which will be
described in this section is the log normal distribution.

The random variable X is said to have a log normal distribution if
Y = log X is normally distributed. That is, if Y is normal, then X = eY

is log normal.

The density function of X, fX(x) is

d d 1
fx(x) = P(X< x) = T FY (log x) = ” fY (log x)

2
- (log x-p)
1 20'2
S —— e for x > 0 (33)
X0 VZ'n'
=0 for x <0

where FY denotes a normal distribution function with mean M and

. 2 .
variance ¢ . The mean of X, IJ-X, in terms of the parameters of Y is

18



p.x = X fx(x) dx
0
o)
. e’ £ (y) dy (34)
-00
= ep' + 0'2/2
. 2 i
The variance of X, o‘X, is
2
0'; = E(Xz) - B
X
o) , 2
= x f_(x)dx - p
= X
0
[0S)
2u +
= e £,(x) dy - kre (35)
-0

2
2p +
ikt &’

Y
It is important to note that the transformation, e , transforms the mean

as well as the variance.

19



2
The maximum likelihood estimates of pX and O'X can be shown
to be

My (36)

and

d (37)
where Y and 82 denote the sample mean and variance of the normal
distribution log X.

2
If Eqs. (34) and (35) are solved for p and o ,
2 P
o
p =log p -l log 1+—X = log S (38)
X 2 2 >
Fx T
1+ =
2
bx
and 2
[y
X
o =log|l+ —- (39)
P
Let
log X -
z=—E=—F (40)

20



where

n
Z log X.
i=1 '
log X = —m88— (41)
n
2 ; .
and ¢ is estimated by
o ———
z (log Xi - log X)
sZ i=1

- (42)
n-1

The sample size n which is required to put log X within plus or

minus d' units of p with a probability of (1 - @) is, from Eq. (27),

Zar/Z

(a)?

2_2
(g

n-=

(43)

where za/Z denotes the 100 /2 percentage point of the standardized

normal distribution. That is, if log X is computed from n samples,

then
Prob(l 1og§-p|§ d*)z 1-a (44)

Now we will develop a formula to determine the sample size to

estimate Ky by X with a maximum error of d. Note that log X

estimates p, but not By- An estimator for Hy is derived as follows.
Let

2
w = log X +"7 (45)

21



Since it is clear from Eq. (34) that

2
log pye = p % (46)

w estimates log Ky OT e estimates My -

Let n be the sample size to satisfy the following relationship:
Prob (I w - log p.xlﬁ d') >21-a (47)
substituting Eqs. (45) and (46) into (47),
Prob(lm -ul< d'>31 -a

In other words, Eqs. (44) and (47) are equivalent, and Eq. (43)
can be used to estimate the required sample size to satisfy Eq. (47).

Equation (47) can be written as

Prob (w—d'< logpx<w+d'>21-a (48)

or

-d! 1
Prob (ew d < My <ew+d >>1—a

Now, the objective is to determine the sample size n such that

X will satisfy the following.

Prob ()_(-d< px<}_(+d> >1-a (49)

22



By comparison with Eq. (48),

X-d=e (50)
or
1
Xed = et (51)
Denoting solutions for d' in Eqs. (50) and (51) by d'1 and d'2 »
respectively, it follows that
d} = w - log (X - 4) (52)
d, = log (X+4d) -w (53)
Let n, and n, be the sample sizes obtained by substituting d'l and
d‘2 into Eq.(43). If n is defined by
n = max (n1 . nZ) (54)
then n is the sample size sufficient to assure Eq. (49). Summarizing,

the sample size n which is required to put X within +d units of Ky

with a probability of 1- @ is given by

23




2_2 2.2

o Za/?. o Za/2
n = max 2 5 2 (55)
2 _ _ .2
logx+% - log(X - d) log (X +d) - log X -—-

For example, suppose the illustrative example of Section 4.1 is re-
worked using a log normal assumnption for the sampling distribution. The
parameters required for a solution by Eq. (55) include X and l_ég—X
which can be computed from the preliminary data given in Section 2.3

and (rz which can be estimated by sZ

Assume that By is to be estimated with an error d of less than

2
107(psi) with a probability 1 -a of .90. Then, from the data in
Table 1, and from Eqs. (41) and (42),

log X = 1 Z log X. = 18.1984
= '

9
sZ — ] Z (log X. - 18.1984)2
8 ¢ i
i=1
= .0697
and

roey 7 K
log (X +d) =log(8.2x10 +10)

= 18.3373 ; 18.0922

24



2
0697 (1. 65)° . 0697 (1. 65)

max ’
(18. 1984 + ‘06297 _18. 0922)2 (18. 3373 - 18. 1984 -

=]
I

. :97 )2

max {0. 5; 17. 5}

Therefore, the sample size required to assure the stated accuracy under
a log normal assumption would be 18. Note that since the assumed dis-
tribution is skewed, the estimation error is not symmetrical about the
mean.

Sample size requirements associated with estimating the probability
of exceeding a critical level are determined as they were for the normal
distribution. That is, Eq. (32) applies for the log normal case. How-
ever, instead of defining P as in Eq. (29), P in this case is the integral

of Eq. (33).

2 2
_1 1, -(logx-p) /20" -

q

o

ﬁ
]

25



4.3 A NONPARAMETRIC METHOD FOR SAMPLE SIZE DETERMINA TION

For the case when it is judged undesirable to assume a specific dis-
tribution of data values, the Tchebycheff inequality can be applied to deter-
mine a sample size nonparametrically. The Tchebycheff inequality states

that for every k,

L4 21 e (57)

Vn kZ

Prob (li-plf_k

The significance of this relationship is that the area under a probability
2
density curve located outside of p+ko will not exceed 1/k~ regardless

of the distribution. Using the notation of Eq. (24),

a = — or k =

(58)

Thus, a conservative estimate of the number of points in a sample
required to place X within +d units of the true mean p with probability

(1 - @) for any distribution of X is

n=——— (59)
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Similarly, the sample size required to estimate P within a given

tolerance for a specified probability is given by

L. P( - P) -
ad
It can easily be shown that for any P in the interval zero to one,
P(1-P)=1/4. Therefore, the upper bound on Eq. (60) is
1
n=——-7> (61)
4ad

To demonstrate the fact that this method leads to conservative sample

size requirements, consider the application of Eq. (59) to the previous

example problem. Using the preliminary data in Table 1 to compute an
2

estimate for ¢ , and specifying an allowable error of + 107 (psi)2 with

probability 1-a =.90, the total number of measurement points would be

14
0= 4.3x10 - 43

.10 (107)2
Clearly, this nonparametric method is quite inefficient when additional

information about the sampling distribution exists. However, it does

represent a bound on the sample size and has engineering applications.
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APPENDIX

SUMMARY OF IMPORTANT RELA TIONSHIPS

RANDOM SAMPLING

a. Mean

n
X= = Zx_ Eq. (1)
n . 1
i=1 page 2
b. Variance
n
2 1 Z =2
°x “a-1 &% X = ()
i=1 page 3

c. Probability of Exceeding Critical Level Xc

B -

B-

- 1= "¢
Y v v = Eq. (6)
ic1 i page 3

STRATIFIED SAMPLING

a. Mean

L
X= Z W, X Eq. (10)
h=1 hxh page 5

b. Probability of Exceeding Critical Level Xc

L

A A

= Z W P Eq. (15)
h=1 page 11




3 OPTIMUM ALLOCATION IN STRATIFIED SAMPLING

a. Mean Value Estimation

A o
h h
nET Eq. (18)
page 12
Z Ap%h
h=1
Ah
n = o (simple stratification) Eq. (19)
page 13

b. Probability Estimation

V - P
=n Eq. (20)
\/ -P)

& page 13
) A
h=1

c. Comparison of Mean Values in L. Zones

n oM op——— Eq. (23)

i page 14
o
h= =
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4.

SAMPLE SIZE UNDER A NORMALITY ASSUMPTION

Mean Value Estimation

2_2
o Za/Z
n = > Eq. (27)
d page 16
b. Probability Estimation
Zi/z P(1 - P)
= 5 $ 1 Eq. (32)
d page 17
SAMPLE SIZE UNDER A LOG NORMAL ASSUMPTION
a. Mean Value Estimation
e 3
2
o Z2 chZ2
al2 al2
n= max 5 > Eq. (55)
2 2
2 - _ 2 page 24
1ogx+%- - log (X - d) log (X +d) - log X - =
\ o
b. Probability Estimation
2
YA P(1 -P)
_ a2 5 +1 Eq. (32)
d page 17
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SAMPLE SIZE NONPARAMETRICALLY

Mean Value Estimation

2
T o s
ard2
Probability Estimation
P(l - P)
n==——s
ad
& 1
~ 40d®
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Eq. (59)
page 26

Eq. (60)
page 27

Eq. (61)
page 27
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